| Reg. No.: |  |
|-----------|--|
|-----------|--|

# Question Paper Code: 23495

## B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

#### Third Semester

Electrical and Electronics Engineering

#### EE 2202 - ELECTROMAGNETIC THEORY

(Regulations 2008)

[Common to PTEE 2202 – Electromagnetic Theory for B.E. (Part – Time) Second Semester – EEE – Regulations 2009]

Time: Three hours

Maximum: 100 marks

(Codes / Tables / Charts to be permitted, if any, may be indicated)

Answer ALL questions.

PART A 
$$\rightarrow$$
 (10 × 2 = 20 marks)

- 1. Points P and Q are located at (0, 2, 4) and (-3, 1, 5), calculate the distance between P and Q.
- 2. State Stoke's theorem.
- 3. State Gauss law.
- 4. Define electric potential.
- 5. State Ampere's law.
- 6. Classify materials in terms of their magnetic properties.
- 7. Write transformer emf equation.
- 8. Write displacement current equation. Where does it occur?
- 9. Define pointing vector.
- 10. Define standing wave ratio.

### PART B - (5 × 16 = 80 marks)

11. (a) Express vector  $B = \frac{10}{r} a_r + r \cos \theta \, a_\theta + a_\varphi$  in Cartesian and cylindrical coordinates. Find B(-3, 4,0) and  $B(5, \pi/2, -2)$ .

Or

(b) Define divergence and derive the expression for divergence.

- 12. (a) (i) Point charges 1 mC and -2 mC are located at (3, 2, -1) and (-1, -1, 4), respectively. Calculate the electric force on a 10 nC charge located at (0, 3, 1) and the electric field intensity at that point.
  - (ii) The finite sheet  $0 \le x \le 1$ ,  $0 \le y \le 1$  on the z = 0 plane has a charge density  $p_s = xy(x^2 + y^2 + 25)^{\frac{3}{2}} nC/m^2$ . Find the total charge on the sheet.

Or

- (b) If a sphere of radius a with a uniform charge  $\rho_v$  C/m³, determine D everywhere.
- 13. (a) A circular loop located on  $x^2 + y^2 = 9$ , z = 0 carries a direct current of 10 A along  $a_{\phi}$ . Determine H at (0, 0, 4), and (0, 0, -4).

Or

- (b) If an infinitely long transmission line consisting of two concentric cylinders having their axes along the z axis, determine H everywhere. The inner conductor has radius a and carries current I while the outer conductor has inner radius b and thickness t and carries return current -I.
- 14. (a) Determine the magnetic field intensity (H) and Magnetic flux density (B) for two different dielectric medias.

Or

- (b) Derive the modified Maxwell's magnetic curl equation from continuity of current equation and explain the concept with an example.
- 15. (a) A plane wave propagating along the +z direction is incident normally on the boundary z=0 between medium 1(z<0) characterized by  $\sigma_1, \varepsilon_1, \mu_1$  and medium 2(z>0) characterized by  $\sigma_2, \varepsilon_2, \mu_2$ . Derive
  - (i) The incident, reflected and transmitted wave equations,
  - (ii) Refection coefficient, transmission coefficient and their relations.  $(2 \times 8 = 16)$

Or

(b) Derive wave equation for a charge free, linear, homogeneous, and lossy dielectric medium. For the same medium, write the field equations, propagation constant, attenuation and phase constants, and impedance of the medium.